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Japan 
i Computing and Information Systems Centre, Japan Atomic Energy R e s w c h  Institute. ToE. 
Ibaraki 319-11, lapan 

Received 12 July 1994, in final form 31 August 1994 

Abstract. Liquid aluminium is a simple metal which can be modelled as an electron-ion 
mixture with painvise interpafficle interactions. On the basis of the density functional theory, 
the quantal hypemetted-chain (QHNC) formulation for the electron-ion mixture provides exact 
expressions for the electron-ion and ion-ion radial distribution functions (RDF). and shows that 
this electron-ion mixture m be treated as a quasi-onecomponent liquid interacting only through 
a painvise interaction without many-body forces. Using the approximation that the exchange  
wrrelation effect of the conduction electrons in the mixture is represented by the local-field 
wrrection (LFC) of the jellium model, the QHNC formulation offers a procedure for performing 
a first-principles molecular dynamics (MD) simulation where the effective ion-ion interaction is 
determined self-consistently with its liquid smcture. 

Using the Geldar-Vosko (GV) LFC. the smcture factor of liquid aluminium near its melting 
point is calculated by this procedure (QHNC-MD) and is in fairly good agreement with experiment. 
in conjunction wilh the bridge function and the direct comelaion function. 'The calculated ion- 
ion RDF exhibits a significant dependence on which kind of LFC is adopted in the QHNC-MD 
method in contrast with what is found in the case of liquid alkali metals where the LFC of the 
cv type and of the local-densily-approxim3tion type yield almost the same structure faclors. 
The effective ion-ion potential from the QHNC-MD method with the cv LFC becomes a deep 
negative well where the potential of Dagens, Geldm and Taylor has a positive minimum. The 
electron-ion RDF is obtained in a consistent way with the density profile p ( r )  of a neutral 
pseudoatom. The Ashcrofl model potential with core radius rc = 1.120~ produces an elecmn 
density distribution p ( r )  and ion-ion RDF almost i d e n l i d  with the QHNC-MD results. 

1. Introduction 

Liquid aluminium is considered as a simple metal, like alkali liquid metals, in that the 
core electrons forming an ion can be clearly distinguished from the valence electrons and 
that the ion-core electrons do not overlap with those of neighbouring ions significantly. 
Hence, a simple metal can be regarded as a mixture of electrons and ions interacting via 
pair potentials among them: the ions behave as a classical fluid and the free electrons 
form a quantum fluid (referred to as the electron-ion model). Previously, we have derived 
exact expressions for the ion-ion and electron-ion radial distribution functions (RDF) on the 
basis of the density functional theory applied to the electron-ion model, and the quantal 
hypernetted-chain (QHNC) equations are derived by introducing some approximations to 
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these exact expressions [ 1-41. In the QHNC formulation, the effective interatomic potential 
ue f f ( r )  is determined to be consistent with the density distribution p ( r )  of a pseudoatom, and 
the ion-ion and electron-ion RDFs at the same time. The non-linear effect in the electron 
screening is taken into account automatically by the density functional method in such a 
way that the non-linear pseudopotential is constructed in terms of the electron-ion direct 
correlation function (DCF) C&). Only the atomic number ZA is needed to proceed with 
this calculation, as is the case for the calculation of the atomic structure. Furthermore, 
the QHNC equations have been shown to give ionic and electronic structures in excellent 
agreement with experiment when applied to alkali metals (Li, Na and K) [3,5, 61. 

However, there are three conduction electrons per atom in a liquid aluminium, while 
alkali liquid metals have only one conduction electron per atom. In the present work, we 
try to apply this QHNC formulation to aluminium liquid anticipating that we may find some 
differences from alkali metals, although it also constitutes a simple metal. In the standard 
approach, a liquid metal is considered as a quasi-one-component liquid with an effective 
potential determined by a proper pseudopotential using the second-order perturbation. There 
are many calculations of the liquid structure for aluminium which follow this approach [7]- 
[IO], but their agreement with experiment is not as good as for alkali metals when calculated 
without the adjusting procedure. In this standard approach, even when the pseudopotential 
is determined from first principles, computer simulations such as the MD using the effective 
interatomic potential based on this pseudopotential cannot be considered as first-principles 
calculations since many-body forces coming from higher-order terms in perturbation theory 
are ignored; these many-body interactions become important even for a alkali metal. Hafner 
and Jank [IO] calculated an effective interaction for liquid aluminium on the basis of the 
first-principles optimized pseudopotential developed by Harrison, and performed the MD 
simulation to obtain the RDF or the structure factor, obtaining fairly good agreement with 
one of the experiments by adjusting the parameter 01 in the Xa exchange potential; without 
this adjustment, their result deviates from the experiment noticeably. In their treatment, 
the non-linear effect arising from the neglected higher-order terms in perturbation theory is 
not clearly analysed. On the other hand, Dagens, Rasolt and Taylor (DRT) [ 1 I ]  constructed 
a first-principles non-linear pseudopotential, which yields an effective pairwise potential 
taking account of many-body force effect, and with this potential Jacucci ef af calculated 
the structure factor of AI by means of the MD simulation; it also does not agree so well 
with experiments, compared with the case of alkali metals. At this stage it is not clear 
whether these discrepancies are due to inaccuracy in the experiments or due to problems on 
the theoretical side. At least, it is not certain which structure factor data set is most reliable 
for comparison with theoretical results, since the data obtained by the many investigators 
show a wide divergence. In the present work, the QHNC formulation is applied to a liquid 
aluminium using the same approximation as was adopted in the case of liquid alkali metals, 
where we obtained results showing excellent agreement with experiment. 

2. Formulation 

A liquid metal can be thought of as ‘simple’ if the free electrons are clearly distinguished 
from the bound electrons forming an ion core and if the ions and electrons in it are interacting 
with each other via pairwise potentials uij(r). In the ion-electron mixture, the radial 
distribution functions gi , (r)  for the ions are identical with the inhomogeneous electron 
or ion density distribution n , ( r [ I )  around a fixed ion in the mixture-that is, the density 
distributions n,(rI(Llcr = ucl l ] )  (i = I or e) under external potentials, {U,&) = ucl,(r)]. 
caused by the ion fixed at the origin. As a consequence, the density functional theory can 
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lead to exact expressions for ni(rl[U, = U,,]) (i = I  or e) in terms of density distributions 
np(rlU,'") of non-interacting systems under such effective potentials Uf"(r) as to yield 
np(rlU,eff) = ni(rlUIUe) . In this way, the DF theory provides exact, although formal. 
expressions for the RDFS gil(r) for ions as follows 14, 121: 

g i l ( r )  = nP(rlUr")/nb (1) 

(2 )  
1 

U:%) = uiLr) - 

in terms of the DCFS C i j ( r )  and bridge functions Bil(r). In relation to the above equations. 
the Ornstein-Zernike (02) relations in the ion-electron mixture are written as 

/ Cidlr - r ' l)n$gtI(r ') - 11 d r '  - Bil(r)/B 

g,,(r) - 1 = C d r )  + r&) (3) 
(4) gel(r) - 1 = BCel(r) + z r e l ( r )  

r i j ( r )  Cte(lr - 7'1) dj[gy(r') - 11 dr '  (5) 

with 

where B  ̂ denotes an operator defined by 

for an arbitrary real number 01, and represents a quantum effect of the electrons through 
the density response function xg of the non-interacting electrons. In the usual approach, 
a liquid metal is regarded as a quasi-one-component fluid with an effective interatomic 
interaction ue"(r). From this point of view, the effective interaction ueff(r) can be defined 
io such a way that the RDF g ( r )  of the one-component system modelled as a liquid metal 
should be identical to gII(r) in the mixture given by (1): 

g ( r )  = exp[-Bueff(r) + y ( r )  + W9l = g d r )  (6) 
with 

y ( r )  C(jr  - r'l)nJg(r')  - I ]  d r '  , (7 ) s 
Here, the one-component DCF C(Q) is related to the ion-ion DCF C,l(Q) of the mixture via 

since it is defined as n i C ( Q )  
(6) with the help of (8) that the effective potential u""(Q) can be expressed exactly as 

1 - I /&(Q).  Therefore, it is shown from the definition 

when the bridge function B(r) of the one-component system is taken to be Bll(r) for the 
mixture. 

The integral equations for gn(r) and g,l(r), (1) coupled with (3) and (4), are rewritten 
as the equation for the DCFs: 

(10) 
(11) 

c ( r )  = exp[-Bveff(r) + y ( r )  + ~ d r ) ]  - I - r ( r )  
k , ( r )  = n : ( r1~~1-  reI/B - ~ , i / ~ ) / n ;  - 1 - ir , l (r) .  
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This set of equations, (IO) and (11). constitute a set of integral equations for determining 
the RDFs in the ion-electron model, if Ce(r), Be,(r), BII(r). u&) and uel(r) are given 
beforehand. The first equation (10) becomes an integral equation for the RDF. g ( r ) ,  of the 
quasi-one-component liquid with the interaction !Jeff@) specified by (9). On the other hand, 
the second equation (1 1) generates the pseudopotential w b ( r )  = -C,,(Q)/p, evaluating 
ue"(r) by (9) in conjunction with the RDF g(r), which is to be obtained beforehand from 
the first equation (10). These two equations constitute a coupled set of integral equations 
for determining the RDFs and the effective interactions u'"(r). In this sense, the effective 
interatomic potential in the QHNC formulation depends on the liquid structure through the RDF 
gll(r). in contrast with usual effective interatomic potentials for liquid metals. Moreover, 
we note that these expressions indicate an important fact-that a liquid metal can be 
exactly described as a one-component fluid interacting only via pairwise interaction, without 
introducing a many-body potential to evaluate the RDF gll(r), if the ion-ion interaction uIl(r) 
and the electron-ion interaction 

In the simple liquid metal. (a) the electron-electron DCF C,,(Q) can be approximated by 
the LFC d ' " (Q)  of the jellium model in the form: C,(Q) = -Bu,(Q)(l - @"(Q)), by 
neglecting the ion configuration effect on the LFC G(Q)  of the mixture. This approximation 
also gives the formula for the effective potential in the form 

J Chihnra and S Kambayashi 

in the ion-electron mixture are pairwise. 

with the density-density response function X Q  x$/[I + ngpu,,(Q)(l - C j ' " ( Q ) ) x ~ ]  
of the electron in the jellium model, where the ions are replaced by the uniform positive 
background. 

In addition. the electron-ion correlation in a simple metal is so weak that (b) the 
electron-ion bridge function Bel@) is neglected Bel@) = 0. By regarding a liquid metal 
with the atomic number 2, as a mixture of nuclei and electrons [Z]. we have derived (c) 
the approximate bare electron-ion potential Qr) in the form 

Here nk(r) denotes the bound-electron distribution, and px&) is the exchange-correlation 
potential in the local-density approximation (LOA). 

Now, equation (11) can determine the pseudopotential -C,j(Q)/p under the 
approximations (a)-(c), if (d) the ion-ion bare potential q I ( r )  is taken as Coulombic: 
un(r)  = (Zre) ' /r .  When the effective interaction is given by (12) in this way, we can 
produce the RDF g&) from (IO). In this formulation, the effective interatomic interaction 
ue"(i-) is dependent on the RDF to be determined afterwards, since the pseudopotential is 
generated by ( 1  I ) ,  involving gtl(r). From another point of view, this formulation suggests 
that we can perform an a b  initio molecular dynamics simulation based on a painvise 
interaction (12) to obtain the ion-ion RDF. which is used again as the input to achieve a 
pseudopotential leading to a new effective interatomic potential ue"(r); this process should 
be repeated to arrive at a convergence. In principle, we can obtain the RDF gll(r) and the 
ion-ion bridge function B&) by MD simulation in this way. 

As an alternative to the MD simulation, we can set up the modified hypernetted chain 
(HNC) equation 1131 from (IO), with the additional approximation that (e) the ion-ion bridge 
function & ( r )  in (IO) is replaced by Bpy(r:  0) of the Percus-Yevick equation for hard 
spheres with diameter a: B l , ( r )  E Bm(r;  q )  with a packing fraction parameter defined by 
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Figure 1. Effective ion-ion interactions for liquid aluminium. The DRT potential (full circles) 
is close to the Ashcroft-LDA potential (dashed curve). while the lv-LDA potential (open circles) 
becomes negalive at the first minimum where the DKT potential has a positive minimum. The 
Ashcraft-Gv. IV-Gv and QHNC-GV polentials are denoted by the dotted, the chain and lhe full 
curves, respectively. 

q _= nnAo3/6. Here, q is determined by the following condition: 

which was proposed by Rosenfeld as the variational modified hypernetted-chain (VMHNC) 
equation 1141. 

It is very time consuming to apply the MD simulation in the determination of the RDF 
at each step of deriving the new effective potential from (12). It should be noticed that in a 
simple metal the effective interatomic potential is almost independent of its structure; even 
the approximation wherein the RDF gn(r) in u:r(,"(r) of (2) is replaced by a step function 
provides a good description for ueH(r). Hence, at the beginning of our calculation, the 
VMHNC equation is repeatedly solved to achieve a self-consistent RDF gIl(r) and the effective 
interaction ueff(r) using (10) and (1 l) ,  instead of the MD simulation and (1 1). As the final 
step, this effective potential from the VMHNC equation is used for the MD simulation to get 
the RDF g&). 
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Figure 2. The compmison of the ion-ion RDF sa(,) for various effective potentials. The om 
glr ( r )  (full circles) is rather closer to the I v - ~ v  gn(r)  (full curve) than to the Ashcroft-LOA SII(T) 
(dashed curve), despite of the fact that the DRT effective potential is close to the Ashcroft-LDA 
potenlid. 

3. Calculation procedure a n d  results 

When we proceed to apply this formulation to the liquid metal aluminium, it  is necessary 
to introduce explicit expressions for the LDA px&) and LFC Cj'"(Q) in the jellium 
model. There are many types of LFC calculated for the jellium model, where we have 
some knowledge of the conditions to be fulfilled. However, to date we have no criterion on 
the basis of which to judge beforehand which LFC is better for the evaluation of ueff(r), since 
the LFC in  (9) is not that of the jellium model, but is that of the electron-ion mixture; this 
LFC depends on the ion configuration, which is replaced by the uniform positive background 
in the jellium model. In this calculation, we choose the LFC Cj'"(Q) to be that of Geldart 
and Vosko (GV) [151: 

@"(e) = q2/(2q2 + 4g) (15) 

with q = Q/QF. g = 1/(1+0.01551ynrJ. 1y = (4/9n)'I3 andr ,  = (3/4j~nA)'/~ in units of 
the Bohr radius LIB and the Fermi wavevector QF, since the GV LFC has a simple expression. 
and has been applied to liquid alkali metals to produce results in excellent agreement with 
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experiments. Next, the exchangeconelation potential p x c  involved in the bare electron- 
ion interaction h ( r )  of (19) is taken to be that proposed by Gunnarsson and Lundqvist 
[16]: 

Q (A-') 
Figure 3. Structure facton calculated for various effective ionic potentials: the QHNC-GV (Full 
curve), IV-CY (chain curve) and Ashmof.Gv (dotted curve) potentials, which are compared with 
the x-my (full circles) and the neutron scattering (open circles) experiments. 

At the first step, i t  is necessary to set up the initial ve"(r) for the beginning of the iteration 
to solve the QHNC equations; this is done by approximating grr(r) by a step function Q(r  -Q), 

with a the Wigner-Seitz radius, in addition to making the approximation CeI(r) Y Zlez/r 
in  (2). These two approximations reduce the set of integral equations, (11) and (2). to 
the simple problem of calculating the electron density distribution around a fixed nucleus 
in the centre of spherical vacancy in the jellium: we refer to this as the jellium vacancy 
(JV) model. Next, the VMHNC equation is repeatedly solved to obtain the self-consistent 
ion-ion RDF for each new interatomic potential, which is determined by (12) in terms of 
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5 10 

Figure 4. The comparison Of the ion-ion RDF from Ihhe QHNC-MD melhcd (full curve) with the 
experimcnl (open circles); the VMHNC result is shown by the dashed curve. 

the electron-ion DCF from (1  1) for each ion-ion RDF. As the last step, the self-consistent 
interatomic potential obtained in this process is used for the MD simulation to get the RDF 

In order to perform the MD simulation, the interatomic potential must be truncated at the 
proper distance and the system size is taken to be some finite size. In the case of a liquid 
metal which has a long-range Friedel oscillation, this treatment may introduce an error in 
the RDF due to truncation. Furthermore. the RDF information is limited only to the region 
where the distance r is smaller than L / 2 ,  half of the side length L of the simulation cell; 
thus, it is necessary to extrapolate the RDF over the whole range to get the structure factor 
SI,( Q) from the MD result. We have introduced a precise method for obtaining the RDF 
everywhere for the full potential ueR(r) from the MD result for the truncated potential: 

gdr f  . 

This method is based on the fact that the bridge function is not sensitive to the long-range 
part of the potential. Using the HNC scheme for extrapolation of the M D  RDF gMD(r) over 
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t I I I I I I 
0 2 4 6 

r (A) 
Figure 5. The eleclron density dismibution p ( r )  ofa neulral pseudoatom calculaled by the QHNC 
method (full cuwe) and the Ashcroft model potential (full circles); the dashed curve denotes,the 
3sdectron density distribution in a free aluminium atom. 

the whole range for the cut-off potential uc( r ) :  

we can extract the bridge function BMo(r) for the cut-off potential; this bridge function was 
found to remain almost same even if the potential cut-off R, was taken as very large. Thus, 
by assuming that the bridge function of a real system is approximated by BMo(r)  obtained 
from the MD with low cut-off of the potential, the RDF of the full potential veff(r) can be 
calculated from the MHNC equation combined with this bridge function. To get the correct 
bridge function from the small-size MD, i t  is important to take the extrapolating distance R 
as short as three or four interatomic spacings, discarding the RDF data. beyond that distance. 
By applying the isokinetic constraint [17], the MD simulations have been performed for 
4000 particles with potential truncated at Rc = 5.31~ over IO5 time steps; the extrapolation 
distance is taken as R = R,, although we have the RDF information up to L / 2  = 12.8~ for 
this system size. The details of this procedure are described in [18]. 

The state of liquid aluminium under consideration is at the temperature 946 K and 
density nb = 5.298 ions cm?, which is characterized by two parameters: the plasma 
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Figure 6. The electron-ion RDFS calculated by &e Qmc method (full curve), the neutral 
pseudoatom method (dashed curve) and the Ashcroft model potentid (full circles). The open 
circles are the experimental results obtained by Takeda el al. 

parameter r = 965.6 and the electron sphere radius rs = 2.164 in units of the Bohr radius 
ae. In  figure 1, the self-consistent effective potential (full curve) of liquid aluminium is 
plotted together with several other potentials; this aluminium potential is calculated from 
the QHNC equations combined with the VMHNC condition (14) to determine q. It is well 
known that the effective potential for aluminium is significantly dependent on what kind 
of LFC G(Q) we choose for x ( Q )  in (12). For comparison, we calculated the effective 
potential using the LFC of LDA type: G(Q) = y e 2 ,  which is commonly used to calculate 
aluminium potentials. Here, we take y = 1/(4gQ;), relevant to (15): y _= G(Q)/Q2~p=o.  
The Jv method for calculating ueff(r) is shown to be identical to the neutral-pseudoatom 
method of Perrot [19, 201, and it is also essentially same as the DRT method, except as 
regards the important point that the non-local pseudopotential with fitting parameters is 
used in their formulation instead of the local pseudopotential wb(Q), The JV potential 
with the LDA G(Q)  (abbreviated as the JV-LDA, hereafter) becomes negative where the DRT 
potential shows a positive minimum near 3 A. We remark that Pemot’s potential is also 
negative there, similarly. The potential from the Ashcroft pseudopotential with core radius 
r, = 1.12ae becomes very close to the DRT potential if the LFC is taken to be of LDA type. 
On the other hand, the minima of the potentials become deeply negative when the LFC of 
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GV (15) IS adopted i n  the calculation of the QHNC, Jv and Ashcroft potentials 

n 
k 
W 

U 

r (A) 
Figure 7. The direcl correlation function (full curve) for the l v c v  potential (dashed cuive) in 
comparison with the DCF (full circles) far the DRT potential (dotted curve). 

It is interesting to notice in figure 2 that, although the Ashcroft and DRT potentials are 
close to each other, the MD RDF [21] of the DRT potential shows a large deviation from 
that calculated by MD using the Ashcroft potential with the LDA G(Q) (Ashcroft-LDA), and 
that i t  agrees rather well with the'MD result for the JV-GV potential. The RDF for the JV-GV 
potential becomes almost identical to those for the Ashcroft-GV and QHNC-GV potentials; the 
GV G(Q) yields almost the same RDF whichever method of determining the pseudopotential 
is adopted among the QHNC, JV or Ashcroft approaches, as is the case for the LDA G(Q). In 
alkali liquid metals, it does not cause any significant difference in the RDF whether one uses 
the LDA or GV G(Q), although their effective potentials are quite different. In contrast with 
what is found for liquid alkali metals, the RDF (or the structure factor) of liquid aluminium 
depends significantly on the choice of the LFC to be used for X Q  in (12). The structure 
factor (SF) is calculated by Fourier transformation of the MD. RDF, which is corrected for 
a full potential and extrapolated over the whole range by the method mentioned above. 
The QHNC-MD SF is compared with the results of the x-ray [22] and neutron diffraction 
[23] experiments in figure 3, showing a fairly good agreement with the x-ray SF. However, 
the agreement between theoretical and experimental results is better in the case of alkali 
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Figure 8. The bridge function for the IV-GV potential calculated by the MD method (full curve) 
is compared with that (full circles) of the DRT potential. The dashed C U M  indicates the PY 
bridge function with q = 0.4418 

metals, where more reliable experiments are to be found. As mentioned before, the MD 
SF for the Ashcroft potential is close to the QHNC-MD SF as well as the MD SF for the 1V 
potential, although their potentials differ as is shown in figure I; the height of the first peak 
in the JV SF is a little lower than those of the other two SFs. In figure 4, the QHNC-MD 
RDF is compared with that extracted from the x-ray SF. The RDF obtained from the VMHNC 
equation shows a good agreement with the MD result for the QHNC potential except near the 
second peak, where we observe a flattening in the MD RDF as discussed by Jacucci et al. 
The reason for the Ashcroft potential producing almost the same RDF as the QHNC potential 
can be understood from figure 5 ,  which shows that the core radius r, = 1 . 1 2 a ~  for the 
Ashcroft model potential yields a density distribution p ( r )  of the pseudoatom close to the 
QHNC one except in the core region. It is interesting to find that the QHNC p ( r )  has  the 
same inner-core structure as the 3s-electron density distribution in a free AI atom. 

The electron-ion RDF from the QHNC equations is shown in figure 6; its Fourier transform 
&(Q)  is represented in the form 121 
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0 

Figure 9. The pseudopotential determined by the Iv method (full curve) compared with the 
Ashcroft model potential (dashed cune) in units of the Fermi energy E F .  

using the structure factor and the density distribution of the pseudoatom: 

With the help of the above equations, the pseudopotential method using the Ashcroft model 
potential can be used to evaluate the electron-ion RDF by inserting it into (20) instead of 
-CeI(r)/,3; the result has no inner-core structure near the origin, as is expected. 

Usually, the structure factor of a liquid metal, measured by x-ray methods, is extracted 
by assuming that a liquid metal can be taken as an assembly of neutral atoms with the 
atomic form factor f * (Q)  h(Q) + f s S ( Q ) ,  where f i ( Q )  and h 3 , ( Q )  are the form factors 
of ion and 3s valence electrons i n  a free atom, respectively. In reality, a liquid metal is 
composed of ions and conduction electrons. Due to the presence of conduction electrons, 
the structure factor S,(Q) extracted from x-ray data using the standard analysis shows a 
difference from S,,(Q) as follows: 

Sx(Q) = [ f ~ ( Q ) / f d Q ) l ~ S d Q )  (21) 

where ~ M ( Q )  = f i ( Q )  + p ( Q )  is the form factor of a neutral pseudoatoms [24]. Since 
p ( Q )  is very close to f 3$ (Q)  as shown in figure 5, the difference between S, and S,,(Q), 
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Q (A-') 
Figure 10. Camparisan of variour evpcrimenral S f N C I U E  factors W m d a  (full circles) [ZZ]. 
Jovic el d (open circles) [U], Takeda er nl ( s q u a d  1251, and Slallard and Davis (triangles) 
[26]. The full curve dcnotes the QHNC cdcularion. 

that is, between the x-ray and neutron diffraction SFs is very small. We have calculated the 
factors [fM(Q)/f*(Q)]' for liquid alkali metals and aluminium; the value for aluminium 
is at most 1% near the first peak of the SF. On the basis of the formula (ZI), Takeda et al 
[25] have obtained the electron-ion RDF g&) from the analysis of the difference between 
the x-ray and neutron diffraction SFs, which is plotted as open circles. To obtain a reliable 
electron-ion RDF from this difference, i t  is necessary to perform the x-ray and neutron 
experiments with more precision and to extract the experimental structure factor with more 
careful error analysis, since this difference is very small as mentioned above. In figure 7, 
the DCFS for the JV-CV and DRT potentials are plotted together with their potentials; the DCFS 
show a large difference between the Jv and DRT potentials. However, the bridge function 
for the Jv potential is rather close to that far the DRT potential as shown in figure 8: the 
dashed curve denotes the hard-sphere bridge function with q = 0.4438 determined by the 
VMHNC equation. 
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4. Discussion 

The Ashcroft model potential with r, = 1.12ae generates the pseudoatom density p ( r )  in 
good correspondence with that from the QHNC formulation taking account of the non-linear 
effect, though it has only one parameter r, to be adjusted. In contrast to this, the DRT 
potential is determined in such a way as to fit the non-linear p ( r )  using the non-local model 
potential with many parameters. However, it has a similar nature to the Ashcroft model 
potential in the sense that the Coulomb potential is cut off to give a constant value in the 
core region, like a step function; both pseudopotentials yield effective interatomic potentials 
with a positive minimum, if the LFC is chosen to be that of Ge ldm and Taylor or to be of 
LDA type. On the other hand, the JV pseudopotential wb(r) = -bCe,(r) with use of the LDA 
G(Q) does not give a positive minimum in its interatomic potential (the JV-LDA potential) 
as seen in figure 1, although the JV method is essentially the same method as that of DRT. 
This difference comes from the fact that the Jv pseudopotential (full curve in figure 9) 
deviates significantly from the Ashcroft model potential near rC. The Jv pseudopotential has 
an inner-core structure. Even if this is pseudized as shown by the open circles in figure 9. i t  
generates almost the same effective interatomic potential. Thus, we can say that the positive 
minimum in the DRT potential may have its origin in the special functional form assumed in 
the non-local pseudopotential to produce the pseudoatom density. In fact, the interatomic 
potentials for AI calculated by Manninen eta! [28] and Perrot [ZO], who used essentially the 
same method as DRT did, have no positive minimum and become identical to our potential 
with the LDA G(Q). However, the MD method using the JV-LDA potential with a shallow 
negative potential does not give a structure factor that coincides with the experimental result; 
the situation is same for the Ashcroft-LDA and QHNC-LDA potentials, which yield almost the 
same structure factor as the case of the JV-LDA potential. We have used the CV G(Q) to 
calculate correlations in alkali metals (Li, Na, K, Rb, Cs), and obtained structure factors in 
excellent agreement with experiments [27]. In alkali metals, what kind of LFC is chosen 
is not important; choosing either the GV or LDA G(Q)s produces no significant difference 
in the RDF, although the effective interatomic potentials differ. However, the situation is 
quite different in the case of a liquid metal with many valence electrons such as AI: the 
structure factor calculated using the LDA G(Q) is significantly different from that calculated 
using the GV G(Q), which leads to good agreement with the experimental result. This 
difference between the behaviours of liquid alkali metals and aluminium may be attributed 
to the difference between their ionic charges; the ion-ion Coulomb interaction of aluminium 
is larger by factor of 3’ than that of liquid sodium. The large ionic charge of aluminium is 
screened by three valence electrons for each ion; the long- and intermediate-range part of 
the aluminium potential between ions remains very large compared to that of the sodium 
effective potential. 

In our QHNC-MD formulation, the LFC is introduced externally in addition to the 
exchange-correlation potential @xc(n).  The LFC in the QHNC formulation is precisely that 
of the electron-ion mixture defined in the electron-electron DCF C,(Q) = -.fh~&(Q)[l - 
G(Q)], which depends on the ionic structure. In the case of aluminium, where it is 
significantly dependent on the choice of the LFC-in contrast with the case for the alkali 
metals-it is important to determine the LFC G(Q) via an equation coupled to the liquid 
structure, as was done for liquid metallic hydrogen [29, 301. 

Our calculated structure factor of AI does not show such close agreement as was 
achieved for alkali metals. On the other hand, four experimental data sets 122, 23, 25, 261 
of structure factors near the melting point deviate substantially from each other as shown 
in figure 10. The x-ray SFS should almost coincide with the neutron diffraction SFs, even 
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i f  the x-ray data are analysed to extract the SFs neglecting the presence of the conduction 
electrons as was mentioned i n  section 3. To compare theory with experiment, we need more 
accurate experiments, while the theoretical approaches also have some points that require 
improvement. 

J Chihara and S Kambayashi 
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